Un’ipotesi è una dichiarazione specifica di previsione. Descrive in termini concreti (piuttosto che teorici) ciò che vi aspettate che accada nel vostro studio. Non tutti gli studi hanno ipotesi. A volte uno studio è progettato per essere esplorativo (vedi ricerca induttiva). Non c’è un’ipotesi formale, e forse lo scopo dello studio è quello di esplorare più a fondo qualche area per sviluppare qualche specifica ipotesi o previsione che può essere testata nella ricerca futura. Un singolo studio può avere una o molte ipotesi.
In realtà, quando parlo di un’ipotesi, in realtà sto pensando contemporaneamente a due ipotesi. Diciamo che voi prevedete che ci sarà una relazione tra due variabili nel vostro studio. Il modo in cui imposteremmo formalmente il test d’ipotesi è di formulare due dichiarazioni d’ipotesi, una che descrive la vostra previsione e una che descrive tutti gli altri possibili risultati rispetto alla relazione ipotizzata. La vostra previsione è che la variabile A
e la variabile B
saranno correlate (non vi interessa se è una relazione positiva o negativa). Allora l’unico altro risultato possibile sarebbe che la variabile A
e la variabile B
non sono correlate. Di solito, chiamiamo l’ipotesi che sostenete (la vostra previsione) l’ipotesi alternativa, e chiamiamo l’ipotesi che descrive i rimanenti possibili risultati l’ipotesi nulla. A volte usiamo una notazione come HA
o H1
per rappresentare l’ipotesi alternativa o la vostra previsione, e HO
o H0
per rappresentare il caso nullo. Bisogna fare attenzione qui, però. In alcuni studi, la vostra previsione potrebbe benissimo essere che non ci saranno differenze o cambiamenti. In questo caso, state essenzialmente cercando di trovare supporto per l’ipotesi nulla e siete contrari all’alternativa.
Se la vostra previsione specifica una direzione, e la null quindi è la previsione di nessuna differenza e la previsione della direzione opposta, la chiamiamo un’ipotesi a una coda. Per esempio, immaginiamo che stiate studiando gli effetti di un nuovo programma di formazione dei dipendenti e che crediate che uno dei risultati sarà che ci sarà meno assenteismo dei dipendenti. Le vostre due ipotesi potrebbero essere dichiarate in questo modo:
L’ipotesi nulla per questo studio è:
HO: Come risultato del programma di formazione dei dipendenti dell’azienda XYZ, non ci sarà una differenza significativa nell’assenteismo dei dipendenti o ci sarà un aumento significativo.
che è testato contro l’ipotesi alternativa:
HA: Come risultato del programma di formazione dei dipendenti della società XYZ, ci sarà una significativa diminuzione dell’assenteismo dei dipendenti.
Nella figura a sinistra, vediamo questa situazione illustrata graficamente. L’ipotesi alternativa – la vostra previsione che il programma diminuirà l’assenteismo – è mostrata lì. L’ipotesi nulla deve tener conto delle altre due condizioni possibili: nessuna differenza o un aumento dell’assenteismo. La figura mostra un’ipotetica distribuzione delle differenze di assenteismo. Possiamo vedere che il termine “a una coda” si riferisce alla coda della distribuzione sulla variabile di risultato.
Quando la vostra previsione non specifica una direzione, diciamo che avete un’ipotesi a due code. Per esempio, supponiamo che stiate studiando un nuovo trattamento farmacologico per la depressione. Il farmaco è passato attraverso alcuni test iniziali sugli animali, ma non è ancora stato testato sugli esseri umani. Voi credete (sulla base della teoria e della ricerca precedente) che il farmaco avrà un effetto, ma non siete abbastanza sicuri di ipotizzare una direzione e dire che il farmaco ridurrà la depressione (dopo tutto, avete visto più che abbastanza trattamenti farmacologici promettenti che alla fine hanno dimostrato di avere gravi effetti collaterali che hanno effettivamente peggiorato i sintomi). In questo caso, potreste dichiarare le due ipotesi in questo modo:
L’ipotesi nulla per questo studio è:
HO: Come risultato di 300mg./giorno del farmaco ABC, non ci sarà una differenza significativa nella depressione.
che viene testata contro l’ipotesi alternativa:
HA: Come risultato di 300mg./giorno del farmaco ABC, ci sarà una differenza significativa nella depressione.
La figura sulla destra illustra questa previsione a due code per questo caso. Di nuovo, notate che il termine “a due code” si riferisce alle code della distribuzione per la vostra variabile di risultato.
La cosa importante da ricordare sull’enunciazione delle ipotesi è che voi formulate la vostra previsione (direzionale o meno), e poi formulate una seconda ipotesi che è mutuamente esclusiva della prima e incorpora tutti i possibili risultati alternativi per quel caso. Quando l’analisi del vostro studio è completata, l’idea è che dovrete scegliere tra le due ipotesi. Se la vostra previsione era corretta, allora rifiuterete (di solito) l’ipotesi nulla e accetterete l’alternativa. Se la vostra previsione originale non è stata supportata dai dati, allora accetterete l’ipotesi nulla e rifiuterete l’alternativa. La logica della verifica delle ipotesi si basa su questi due principi di base:
- la formulazione di due affermazioni di ipotesi mutuamente esclusive che, insieme, esauriscono tutti i possibili risultati
- la verifica di queste in modo che una sia necessariamente accettata e l’altra rifiutata
OK, so che è un modo contorto, goffo e formalistico di porre domande di ricerca. Ma comprende una lunga tradizione in statistica chiamata modello ipotetico-deduttivo, e a volte dobbiamo fare le cose solo perché sono tradizioni. E comunque, se tutti questi test d’ipotesi fossero abbastanza facili da essere compresi da chiunque, come pensate che gli statistici rimarrebbero impiegati?